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ABSTRACT 
 

This report presents a research examining the feasibility of creating an integrated structural health 

monitoring and impact/collision detection system for bridges in remote cold regions, where in-person 

inspection becomes formidable. The research report includes a theoretical analysis of the impact event 

identification in Chapter II, laboratory experiment verification in Chapter III, and a field testing and an 

integrated Structural health monitoring system in Chapter IV. Based on the systematical research 

outcomes, the impact/collision event and the real-time bridge structural health status have been 

successfully identified and recorded, which could be used for bridge management and resources 

allocation in future. 
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EXECUTIVE SUMMARY 
 

This report presents a three-part research program examining the feasibility of building an integrated 

structural health monitoring and impact/collision detection system in remote cold regions, where in-

person inspection becomes formidable. For the first phase, an algorithm is developed to identify the 

impact location and the impact magnitude using particle swarm optimization (PSO). The algorithm was 

tested using numerical models and proven to be effective in finding the impact location, the impact force 

magnitude, and the impact pulse frequencies. In the second phase, the developed algorithm was tested in 

the laboratory of North Dakota State University (NDSU). A plate with instrumented sensors is tested 

using impact hammers and the strain measurement with noise is considered. The developed algorithm is 

adopted successfully to locate the impact location, the impact magnitude, and the impact frequencies. 

Finally, implementation of the impact/collision system is combined with an innovative displacement 

based damage detection algorithm and used in a concrete bridge in Fargo, ND. The bridge was fully 

instrumented by BDI, Inc., and the data were collected for a static load testing. Based on the measured 

data, a numerical model in ABAQUS was built using the so-call grillage method and validated through 

the field measurements. Based on the validated model, the deformation based damage detection method is 

suggested. The damaged bridge responses are simulated through artificial damages (stiffness reduction) in 

the numerical model. From the simulated responses, the deformation based damage detection method is 

tested and shown finding the damage location successfully and effectively. Based on the same sensor 

deployment, the impact/collision event is also anticipated to be identified with minor adjustment of the 

boundary conditions suggested in Section 3. 
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1. PART IDESIGN OF THE INTEGRATED STRUCTURE HEALTH 
 MONITORING AND IMPACT/COLLISION DETECT SYSTEM. 
 

Structural health monitoring is a widely accepted concept in infrastructural management. Structural health 

monitoring of engineering structures, and particularly civil infrastructures, has been recently growing 

rapidly. Health monitoring can be performed in active mode by using ultrasonic actuators, which generate 

signals to interrogate the structure, or in passive mode, where the induced signals due to impact event is 

used to detect the damaged/impact points.[1-3] The former one is used in schedule-based maintenance but 

the latter one is applicable to condition-based maintenance. There is a tendency toward condition-based 

maintenance due to its low cost and convenience in contrast to the difficulties associated with schedule-

based monitoring.[4-6] A typical structural health monitoring system will include sensors, data acquisition 

systems, communication systems, data storage, and a processing unit as shown in Figure 1.1. 

 

 
Figure 1.1  A typical structural health monitoring system 
 

The integrated structure health monitoring and impact/collision detect system suggested in this project 

will be composed of sensors, a data collection system, and data processing unit. Several sensor 

deployments have been suggested, which have been shown in Figure 1.2. 
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(a) Composite plate 

 

 
(b) Aluminum plate 
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(c) A Lab model 1-span steel bridge 

 

Figure 1.2  The sensor deployment adopted in lab-pilot tests 

 
An impact/collision detection system is also designed and shown in Figures 1.3 and 1.4. A small scale test 

is performed in the lab using the suggested system. The test could turn on different warning lights based 

on the different levels of impact inputs. When the impact level is higher over a threshold, a red light will 

be turned on. Otherwise, only the impact events, including impact locations and impact magnitudes, will 

be registered in the system. A video showing the process is included in Figure 1.5. 
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Figure 1.3  The designed impact and collision detection system 
 
 

 
Figure 1.4  Far field control end of the impact/collision detection system 
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Figure 1.5  Demonstration of the warning lights for different level of impacts 
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2. DEVELOPMENT OF DATA PROCESSING, AND  
 IMPACT/COLLISION EVENT EXTRACTION ALGORITHMS 
 
2.1  Introduction 

 

Extensive research effort in the literature has been made to identify impact load locations and impact load 

characteristics for different types of structures.[7-17] The IL and impact load time history (ILTH) are 

determined by different techniques of inverse analysis from the local sensor measurement. Inverse 

analysis can be performed by minimizing the error between the measured and predicted data obtained 

from forward solving of a mathematical  model (model-based) [7-10, 12, 14, 18, 19] or by training the structure 

using neural network.[20-22] Model-based methods are more widely adopted by researchers. In these 

methods, the IL and ILTH can be simultaneously obtained by back-analysis of the mathematical model [7-

9, 12] or separately using the transfer matrix method.[10, 18, 19, 23] Transfer matrix method typically needs 

sufficiently fine mesh since too coarse mesh leads to inaccurate results.[16] Furthermore, the transfer 

matrix method may not be efficient in large structures.[19]  

 

A number of researchers have developed or adopted an optimization technique to back analyze a model-

based structure. Efficiency of the algorithms is an important factor for real-time detections. In order to 

back-calculate the impact parameters, the objective function can be minimized with two different classes 

of methods: gradient-based methods and non-gradient-based methods. The main disadvantage of gradient-

method is the costly computations related to the gradient and hessian matrices of complex functions [24] 

and only suitable start points converge to the minimum.[7] In addition, finding the global minimum is a 

great challenge because usually the objective functions are not uni-modal and a local minimum may be 

found instead. In the second type of minimization technique, heuristic global optimization techniques 

such as genetic algorithm (GA) and PSO are used to evaluate the objective function at certain locations 

until the global minimum is found.[7, 25] PSO is a heuristic algorithm that offers advantages such as 

simplicity and convenience in implementation, [26] and convergence for different mechanical problems 

can be ensured by tuning the input parameters.[25] It is a bio-inspired method in which sample points, so 

called “particles,” are selected to cover the sampling space (dimension of space depends on the number of 

unknown parameters). The particles move in the sampling space and communicate with each other to find 

the global minimum. The process of optimization is faster as the objective function is only evaluated at 

certain points and a global minimum is easier to achieve by using a sufficiently broad sampling space.[27] 

To the knowledge of authors, PSO has not been applied to IL and ILTH identification in plate structures 

although it has been used in other fields.[27, 28]  

 

The process of noisy measured responses is another problem in inverse analysis. Inverse (deconvolution) 

problem is an ill-posed problem. Noisy measurements lead to instable results, and objective function does 

not converge to zero at the minimum point.[28] Regularization of the measured data is commonly used to 

overcome the ill-posedness.[14, 18, 29, 30] In this case, additional condition is imposed to optimization of the 

objective function, which implicitly leads to filtering the noisy measured data. Tikhonov, truncation, and 

Singular Value Decomposition (SVD) are the common methods used by others.[14, 31] These methods are 

applicable to linear structural systems.[32] Nonlinearity of structure was addressed by Ma and Ho through 

extended Karman filter and recursive least square estimator.[33] In general, the major disadvantage with 

classical regularization methods is that they need to determine appropriate regularization parameters.[29] 

 

A second approach to address the noisiness of the measured data is stochastic analysis. Stochastic 

analysis, unlike the deterministic methods, addresses the uncertainties associated with the structural 

properties such as elastic modulus and measurement error.[34] Since the goal of inverse analysis is to 

determine the proximity of the impact location and the impact load magnitude, stochastic analysis can be 

performed to find an area instead of a single impact location. Han and Kinoshta suggested a stochastic 
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inverse analysis for a single degree freedom (SDOF) structure to reconstruct impact load.[32] The major 

drawback with this method is that statistical distribution of data needs to be known. Interval analysis is an 

alternative to this method, in which the maximum and minimum (boundaries) of the system response are 

only considered.[34, 35] The output of the inverse analysis is maximum and minimum limits for the back-

calculated parameters and does not give any information about the distribution of IL and ILTH. In the 

interval analysis method, instead of considering a deterministic value for the objective function, a range 

of values is obtained based on the intervals assumed for the input parameters. Essentially, it is assumed 

that the input consists of bounded uncertain data. The mean and radius of the interval corresponding to the 

objective function is then minimized.[35] Qiu and Wang used interval analysis method versus probabilistic 

method to find the dynamic response of a structure and concluded that probabilistic analysis leads to a 

tighter interval since interval analysis only considers the extreme condition.[36] Jiang et al. used interval-

based inverse analysis for truss and frame [35]. They used two objective functions for minimization as the 

center and radius of interval need to be determined. Liu et al. combined regularization and interval 

analysis to reconstruct ILTH for a cylindrical shell structure under impact load at a known location.[34] 

Interval analysis combined with regularization method or alone based on multi-objective function (as in 
[35]) still might be computationally costly, especially for real-time detections. 

 

In this project, IL and ILTH for a simply supported plate are simultaneously obtained and the uncertainty 

is addressed by a non-stochastic inverse analysis. The ILTH is simplified with a sinusoidal function and 

the dynamics of plate is described by the Whitney and Pagano’s solution.[37] PSO as an efficient search 

method is then adopted to minimize the objective function and a new simplified method is finally 

developed to find the extreme limits of the IL and ILTH based on the least square method.  

 

2.2 Identification scheme 
 

In this study, a simple and effective scheme is proposed to identify IL and ILTH through a three-layer 

identification process. The three layers are integrated to effectively identify IL and ILTH in an intelligent 

structure, which contains a network of sensors. At least three sensors are used in this study. Initially, 

strain time histories that are recorded by all the sensors are evaluated and the three least time of arrivals 

(TOAs) corresponding to the closest sensors to the IL are selected. The IL is then estimated by the 

triangulation method.[8, 11, 15] In this method, IL is determined by minimization of the error between the 

predicted and measured TOAs. The main drawback with this method is the way to find TOAs in a noisy 

response. Furthermore, wave speed is not easy to find in an anisotropic plate as it depends on the 

propagation direction and the wave frequency. This method is modified in this study to estimate IL.[8] 

 

The second layer of the identification process consists of detection of IL and reconstruction of ILTH by 

minimizing the measured and predicted strain time histories. The results of the first layer help in refining 

the sampling space. The noisy measured data at the location of the three sensors found in the first layer 

are then filtered by the moving average method and then used to determine the IL and ILTH. The third 

layer of identification determines the extreme ILs and ILTHs based on the maximum observed error in the 

measured data. The error is calculated by subtracting the filtered strain time history from the noisy one. 

 

2.3 Theories 
 

Layer 1: Location Estimation 

 

Initially, TOAs need to be determined. In order to reduce the effect of noise in this stage, differential 

TOA is used:[11] 

 

ti  = ti – t1                                                              (2.1) 
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where t1 and ti are, respectively, the TOA at the i-th sensor and 1-th sensor location. Because three sensors 

are used in this study, i can take 2 and 3. The objective function is then defined as following: 

 

2 2
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2 2 2 2 2

2 2 2 1 1
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2 2 2 2 2 2
3 3 3 1 1
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                  (2.2) 

 

where tim, tic, xi and yi, andV are, respectively, the measured differential TOA, the predicted 

differential TOA, x and y coordinates of the i-th sensor, x and y coordinates of the IL, and wave speed. In 

this equation, it is assumed that the plate is isotropic; otherwise, a direction-dependent wave speed needs 

to be used. Bending wave’s speed in a plate structure can be computed from the following equation: 

 

2 2

4
212(1- )

Eh
V



 
                                        (2.3) 

 

where E,  h,  and  are, respectively, the elastic modulus, Poisson’s ratio, plate thickness, unit weight, 

and wave frequency. Wave frequency can be computed by Fast Fourier Transform (FFT) of the sensor 

measurements.[8] Having wave speed and TOAs at the sensor locations, the objective function (Eq. (2.2)) 

can be minimized by the steepest descent method. The golden search method is adopted for linear search 

in the steep descent method. 

 
Layer 2: Deterministic Identification of Impact Location and Load Characteristics 

 

Layer 2 consists of a plate dynamics model for forward solving in order to predict the strain time history. 

In general, there are two classical approaches to the plate problem: Kirchhoff-Love’s and Mindlin’s 

solution. Kirchhoff-Love’s formulation only takes in-plane shear into account while Mindlin’s solution 

takes out-of-plane shear into account as well. Whitney and Pagano’s solution is similar to Mindlin’s 

solution for thick plate but it also accounts for the effects of anisotropy. Whitney and Pagano’s approach 
[37] to plate vibrations has been adopted in this study for simply supported rectangular plate. Carvalho and 

Soares [38] and Dobyns [39] adopted the governing differential equations and presented a closed form 

solution for vertical displacements of simply supported composite plates. The same methodology can be 

used to derive an expression for strain along x-direction using the relationship between time dependent 

function of bending deflection and modal amplitudes [38] and following equation: 

 

x

x

( x, y,t )
z

x








                         (2.4) 

where z and xare, respectively, z-coordinate with respect to mid-plane and bending curvature about x-

axis. Strain along x-axis can be derived as follows:[38] 

 

0
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Where i, j are mode numbers; a and b, andand ij are, respectively, length and width of plate, x and 

y-coordinate of IL, and modal frequency of the plate which can be found in [38].  Kc and Kij are, 
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where u and v and KA are, respectively, length and width of impact area and KA is a factor depending on 

extensional, bending, and transverse shear stiffness of the plate.[38] In this study, very small values are 

chosen for u and v in order to consider pointwise impact load, however, they can be assumed to be 

unknown quantities such as IL and ILTH in case of impacted area. F(the impact load time history, can 

be simplified by a half-cycle sinusoidal function, 
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where F0, L, U, t0, t1, t2 are, respectively, impact load amplitude, loading frequency, unloading 

frequency, impact start time, the time corresponding to impact amplitude, and impact end time. t0 is zero 

if the measurement starts at the same time that impact occurs. But, in practice, start times of impact and 

strain measurement are different, i.e., strain recording starts long before impact occurs. Therefore, time 

can be set to zero when the first signal is detected in the closest sensor, which means that the time lag 

between the defined start time and impact start time equals to TOA of the closest sensor. t1, t2, and t3 are, 
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Yan and Zou simplified the ILTH with a half-cycle sinusoidal function. Their analysis results indicated 

that IL can be approximately detected and impact load energy and amplitude can be accurately 

determined despite the simplification in ILTH by sinusoidal functions. For damage detection purposes, 

impact load amplitude and energy are important.[7] 

 

To facilitate the computations, the integral in Eq. (2.5) can be calculated analytically by substituting Eq. 

(2.8) into the integral which leads to: 
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where 

 

                                 (2.11) 

                                             (2.12) 

                    (2.13) 

                    (2.14) 

 

Having the forward solving model, the objective function is now defined as below, 
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jimjic ttErr                                                                                           (2.15) 

 

where ic(tj) and im(tj) are, respectively, the predicted and measured strains at the i-th sensor location and 

time tj and N is the number of time steps. The objective function is a 6-dimensional space in terms of X. 

The variables can be written as, 

 

X=XF0, t0, L, U)                        (2.16)  

 

Initial sample vectors (particles) are defined in a way to cover a certain range of the six parameters. The 

output from Layer 1 is used to narrow the range of andThe objective function is iteratively computed 

for the updated vectors until all the sample vectors converge to the destination vector. At each iteration, 

the particle’s speed and position are updated as following, 

 

1 1 1 1 2 2 2k kk kV A V B r ( P X ) B r ( P X )                                                    (2.17) 

1 1kk kX C X D V    
                                                                                             (2.18) 

 

where Xk and Xk+1, Vk and Vk+1, P1, P2, and A are, respectively, the particle’s position (in 6 dimensions) at 

the k-th and (k+1)-th iteration, particle’s speed at the k-th and (k+1)-th iteration, particle’s past best 

position based on its own experience, best position experienced by other particles in the flock, and 

momentum factor. B1 and B2 are factors related to the personal influence and social influence of particles 

and the corresponding terms (second and third term of Eq. (2.17)) can be weighted by stochastic variables 

r1 and r2. C and D, the weight factors for updating particle’s position based on its current position and 

speed, which can be taken as 1.[25]   denotes the element by element multiplication of the two matrices. 

If the factors are constant for all elements of the position and speed vector (X and V), A, B1, and B2 can be 

changed into scalars. In Eq. (2.17), the first term indicates the momentum of motion of the particles in the 

search space, the second term indicates the speed of the particles based on their personal experience, and 

the third term updates based on the social behavior of the particles and their influence on each other. 

Depending on the values of A, B1, and B2, long-term trend of the particles can show convergent (to the 

optimal position), harmonic oscillatory, and zigzagging behavior.[25] The discussed parameters can be 

empirically tuned to make the algorithm work efficiently. 
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Layer 3: Uncertain Identification of Impact Location and Load Characteristics 

 

In case of noisy response, the measured strain time histories are first filtered and then IL and ILTH are 

identified through Layer 2. The back-calculated parameters are assumed to be the mean results based on 

the filtered measurements. The deviation of the variables (F0, t0, L, U) from their mean values is 

then found by another optimization procedure in Layer 3. It is assumed that the measured data are 

bounded uncertain and the boundaries are deterministic values based on the observation. Strain can vary 

between the extreme ends and since only the deterministic boundaries are used in the analysis, the 

probabilistic distribution of the uncertain data is not important for the interval analysis assuming 100% 

level of confidence for the observed extreme errors. 

 

Assume that strain in Eq. (2.5) is rewritten as a function of the vector XF0, t0, L, U), 

 

0 0 L UF ,t ,( X ) ( , ,, )                                                      (2.19) 

 

Using Taylor’s expansion series, the error in strain measurement can be approximated by the following 

equation. The linear term of Taylor series is used in this study assuming that the level of error is small. 

 

0 0

0 0

L U

L U

F t
F t

     
     
     

     
      

   
                              (2.20) 

 

For simplicity in notations, IL and ILTH parameters are denoted by xi and Eq. (2.20) is re-written as: 

 
6

1

s ,t

s ,t i i

i

y a x


                                                  (2.21) 

 

where ys,t is the error at the s-th sensor location and at time t, 
s ,t

ia  is the gradient of strain (Eq. (2.5)) with 

respect to the i-th variable (x1= x2 x3 = F0, x4 = t0, x5 = L, x6 = U) at the s-th sensor location and 

time t, and xi is deviation of the i-th variable. In Eq. (2.21), the values of ys,t and ai
s,t are known at the 

mean X(F0, t0, L, U) obtained in Layer 2. Eq. (2.21) can be written for “s” number of sensors and 

“T” number of time increments. The resulted equation in matrix form is:  

 

XGY                           (2.22) 

 

Eq. (2.22) is very over-determined and hence X can be estimated by calculating Moore Penrose pseudo-

inverse of the matrix G (through singular value decomposition, SVD method): 

 

YGX  
                                                 (2.23) 

 

In order to archive the maximum values of xi, the absolute values of the elements of the matrices G+ and 

Y are used in the calculations. In other words, to maximize xi,, +ERROR is substituted for ys,t whenever it 

is multiplied by a positive element of  G+ and –ERROR is substituted whenever it is multiplied by a 

negative element of  G+. This process will select the maximum and minimum values of strains to find the 

maximum xi. Minimum xi will be obtained in a reverse manner. For a symmetric band, a symmetric 

range will be obtained for xi, however, this is not true for asymmetric or biased errors.  
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2.4 Verification  
 

Finite element model (FEM) is used to verify the forward solving mathematical model and the inverse 

model at Layer 1 and 2. The detected IL and reconstructed ILTH are compared with the actual IL and 

ILTH. 

 

Verification of Forward Solving Model 

 

The presented mathematical model is verified by a finite element model (FEM) using ABAQUS. An 

aluminum plate of 0.88 × 0.88 × 0.0025 m subjected to a sinusoidal impact load is simulated by 

quadrilateral shell element with reduced integration for small strains (S4RS). The plate is subjected to an 

impact load at the center of the plate with amplitude of 1000 N and loading and unloading frequencies of, 

respectively, 1000 and 300 Hz, which starts at time zero. Since only the first 1000 S of vibration time is 

used, there would not be significant damping effect. The FEM contains 16,900 shell elements and 17,161 

nodes. Vibrating duration is divided into 100 equal time intervals. 

 

Figure 2.1 compares FEM and the mathematical model’s results at impact location. There is a satisfactory 

match between the results obtained from both methods. 

 

 
Figure 2.1  Comparison of strain time histories between the mathematical model and FEM at impact  

        location at the center of the plate 
 

Verification of Layer 1  

 

The same plate with the properties shown in Table 2.1 is subjected to the same impact load for IL and 

ILTH identification through Layers 1 and 2. Three different points are selected as the impact location and 

strain time histories at 9 sensor locations are collected for IL and ILTH identification (Figure 2.2). 

Coordinates of impact and sensor locations are shown in Table 2.2. 

 

In the first layer, threshold method is used to find the TOA at each sensor location. The level of threshold 

strain is assumed to be two times the maximum amount of noise. Time histories obtained at the three 
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closest sensor locations are subjected to Fast Fourier Transform (FFT) to find the dominant frequency 

content. Then the frequency and corresponding parameters to plate properties are substituted into Eq. 

(2.3) to calculate wave speed. Now, having all the required parameters, Eq. (2.2) is minimized to estimate 

the IL. Table 2.3 summarizes the results of IL estimation for the three impact locations. For instance, 

from the TOAs, it can be deducted that SENS4, SENS5, and SENS7 are the closest sensors to IL1 (Figure 

2.2) and X and Y-coordinates of IL is approximated by, respectively, 20% and 9% error (origin is at the 

bottom left corner of the plate). In all three cases, there are relatively slight deviations from the exact 

impact location. This will be adjusted in the second layer of analysis. 

 

Table 2.1  Geometrical and mechanical properties of the plate structure used in current study 

 

  
Plate length 0.88 m 

Plate width 0.88 m 

Plate thickness 2.5 mm 

Elastic modulus 69 GPa 

Poisson’s ratio 0.34 

Unit weight 2,700 Kg/m3 

Stiffness properties D11 = D22 = 101.59 Pa 

D12 =34.54 Pa 

D66 = 33.52 Pa 

A22 = 195 MPa 

A44 = A55 = 64.4 MPa 

Plate length 0.88 m 

Plate width 0.88 m 

Plate thickness 2.5 mm 

Elastic modulus 69 GPa 

Poisson’s ratio 0.34 

Unit weight 2,700 Kg/m3 

Stiffness properties D11 = D22 = 101.59 Pa 

D12 =34.54 Pa 

D66 = 33.52 Pa 

A22 = 195 MPa 

A44 = A55 = 64.4 MPa 
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Figure 2.2  Sensors configuration and impact locations considered for the impact load (IL) and impact      

 load time history (ILTH) identification (    denotes impact location and     sensor location, 

 see Table 2.3 for coordinates). 

 

Table 2.2  X and Y- coordinate of the IL and sensor locations in Figure 2.2 
Point X (m) Y (m) 

IL1 0.25 0.50 

IL2 0.64 0.62 

IL3 0.53 0.30 

SENS1 0.22 0.77 

SENS2 0.44 0.77 

SENS3 0.66 0.77 

SENS4 0.22 0.55 

SENS5 0.44 0.55 

SENS6 0.66 0.55 

SENS7 0.22 0.33 

SENS8 0.44 0.33 

SENS9 0.66 0.33 

SENS10 0.22 0.11 

SENS11 0.44 0.11 

SENS12 0.66 0.11 

 

  

0.88 m 

Y 

X 

0.88  m 
IL1 

SENS1 SENS2 

IL2 

IL3 

SENS3 

SENS4 

SENS7 

SENS10 

SENS5 SENS6 

SENS8 SENS9 

SENS11 SENS12 
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Table 2.3  Summary of the IL detection results from Layer 1 

Time of Arrivals S) 

Sensor 
Impact Location 

Sensor 
Impact Location 

Sensor 
Impact Location 

IL1 IL2 IL3 IL1 IL2 IL3 IL1 IL2 IL3 

SENS1 340 480 590 SENS2 400 310 510 SENS3 530 290 490 

SENS4 130 480 400 SENS5 250 290 310 SENS6 420 300 340 

SENS7 250 570 340 SENS8 330 440 130 SENS9 480 590 250 

SENS10 600 670 410 SENS11 450 600 410 SENS12 580 540 290 

Dominant wave frequency  

Impact location IL1 IL2 IL3 

Dominant frequency* (kHz) 2.6 3.9 4.16 

Estimated impact Location 

Impact location coordinates 
IL1 IL2 IL3 

Estimated Target Estimated Target Estimated Target 

 (m) 0.31 0.25 0.56 0.64 0.52 0.53 

 (m) 0.46 0.50 0.65 0.62 0.25 0.30 

*The average of the frequencies at the three sensor locations due to impact at the indicated point is reported. 

 
Verification of Layer 2 

 

IL is refined and ILTH is computed in this layer. The obtained X and Y-coordinates of impact locations in 

the previous layer of analysis are used to define a sampling space. This helps maintain a minimum 

number of particles as computation costs increase with a higher number of particles due to increased 

number of evaluations of the objective function. The boundary formed by the surrounding sensors also 

helps in refining the sampling space. For example, the TOAs in Table 2.3 indicate that IL1 is contained 

within a square formed by SENS4, SENS5, SENS 7, and SENS 8. Now, having estimated  = 0.31 m, the 

closest vertical gridline has X = 0.22 m. Therefore,  = 0.22 is used as the lower bound of the sampling 

space. The sampling space is chosen in a way that the X and Y coordinates from layer 1 are mean of the 

space. It means that the upper bound for is 0.40. Therefore,  = 0.31 is the mean of  = 0.22 – 0.40. In a 

similar way,  = 0.37 and 0.55 is used as the sampling space for   
 

Results of parameter tuning of A, B1, and B2 matrices are as follows: 
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21 BBA                                                              (2.24) 

 

Figure 2.3 shows fitness convergence of the three analyses corresponding to the three impact locations. 

Fitness is calculated by summing the inverse of the values of objective function for each particle at each 

iteration. The analyses for IL1 and IL3 converge at 70 iterations and for IL2 at about 80 iterations. 
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However, the ultimate fitness values are different, indicating different levels of accuracy for different 

impact locations. The identified ILs for IL1, IL2, and IL3 and the corresponding reconstructed load time 

histories are, respectively, shown in Figure 2.4. An estimated location with an error of 1.9% – 24% is 

obtained through the triangulation method (Table 2.3) and it is adjusted in the second layer of analysis 

with an error ranging between 0.02% and 2.7%. ILTH match quite well with the actual time history, 

showing an error of about 5.3% for amplitude, 1.7% and 3.1%, respectively, for loading and unloading 

frequencies, and 3.4% for t0 at the IL2 impact location. 

 

Figure 2.3  Fitness value vs. number of iterations for particle swarm optimization (PSO) of the three 

 impact locations (see Figure 2.2 for impact locations) 
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Figure 2.4  a) Deterministic impact load identification results obtained from triangulation (Layer 1) and 

 particle swarm optimization (PSO) methods (Layer 2), b) Comparison of the target and 

 reconstructed impact load time history (ILTH) at different ILs 
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2.5 Identification of impact location and load characteristics 
 from noisy response 
 

In the previous inverse analyses, deterministic time histories obtained from the FE model were used to 

identify IL and ILTH. However, in practice, the strain measurements are noisy and thus cause numerical 

instability. Therefore, the obtained strain time histories at all sensor locations due to impact load at IL2 

location are used to synthesize a noisy response. The noisy response is synthesized by the following 

equation:[34] 

 

1 1noisy FEM NSL STD RND( , )                                                    (2.25) 

 

where noisy, FEM, NSL, STD, and RND(-1,+1) are respectively noisy strain time history, theoretical time 

history obtained from FE analysis, a factor indicating noise level, standard deviation of the theoretical 

strain time history, and a random number between -1 and 1. In this study, two noise levels, 5 and 10%, are 

used.  

 

The synthesized noisy time histories are used to detect IL and reconstruct ILTH through the 1st to 3rd 

layers of the discussed identification scheme. 1st and 2nd layers calculate the mean IL and ILTH and the 

3rd layer determines the possible extreme bounds of IL and ILTH due to uncertainty in the measurement. 

In order to process the data through the first and second layers, the noisy responses are filtered by moving 

average method with a period of 5 (for a total of 100 data points at each sensor location). TOAs are found 

from the filtered time histories and the three least ones are selected for the first layer of analysis. 

Approximation in the strain time history due to filtration results in error in TOAs. Introduction of error in 

TOA due to presence of noise in the response is also reported by others.[8, 11] TOAs corresponding to 5% 

and 10% noise levels are summarized in Table 2.4. The filtered data show up to 53% difference in TOAs 

with respect to the ones obtained from noiseless data (Table 2.4). Here, the grid lines are not used to 

confine the potential impact area because, in general (depending on noise level), inaccurate TOAs might 

be misleading in finding the closest sensors. The estimated IL coordinates for 5% and 10% noise levels 

are  0.59 and 0.64,  = 0.55 and 0.65, which show up to 14% error with respect to the actual ones. 

 

Table 2.4  Summary of the IL detection results from Layer 1 for noisy time histories due to impact at IL2 

Time of Arrivals (S) 

Sensor 
Noise level 

Sensor 
Noise level 

Sensor 
Noise level 

5% 10% 5% 10% 5% 10% 

SENS1 480 520 SENS2 310 310 SENS3 250 300 

SENS4 440 510 SENS5 290 290 SENS6 140 300 

SENS7 610 570 SENS8 430 440 SENS9 580 590 

SENS10 700 700 SENS11 610 600 SENS12 580 590 

Dominant wave frequency 

Noise level 5% 10% 

Dominant frequency* (kHz) 3.9 3.9 

Estimated impact Location 

 5% Noise level 10% Noise level Target 

 (m) 0.59 0.55 0.64 

 (m) 0.64 0.65 0.62 
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In the second layer, the mean IL and ILTH are computed based on the filtered data. Then the error for 

each selected sensor (at Layer 1) is calculated by deducting the filtered data from the noisy data. The 

maximum measurement error for each sensor is substituted into Eq. (2.23). Having the measurement 

errors, Layer 3 of the analysis is performed to compute the ultimate deviation from the mean IL and 

ILTH. Figure 2.5 shows the actual IL2, estimated IL with Layer 1, adjusted IL with Layer 2, and the 

deviations from the mean points. It can be seen that the actual point is within the rectangle, which shows 

locus of likely impact points depending on the deviations in the strain measurements, and the boundaries 

are the likely impact points based on the maximum measurement errors. The deviation zone significantly 

expands with noise level from 5% to 10%.  

 

Figure 2.6 illustrates the reconstructed ILTH based on the filtered strain time histories, the actual ILTH, 

and the maximum/minimum limits of ILTH obtained from the third layer of analysis for 5% noise level. 

The maximum and minimum impact load characteristics for 5% and 10% noise levels are summarized in 

Table 2.5. Due to large variation of frequencies, the upper lower bound ILTHs are plotted with the mean 

frequencies and start time and upper and lower amplitudes. At 5% noise level, t0 varies from -280.1 to 0 

S covering a wide range including the actual t0 = -140 S. The actual t0 is found through the 

deterministic numerical responses using the threshold criteria (the threshold for the 5% noise case is 

8.46E-6; the threshold for the 10% noise case is 3.46E-5). According to the convention, positive t0 has no 

physical meaning, therefore only negative sampling space is used in the PSO algorithm. In Figure 2.6, the 

upper and lower bound curves do not start at the extreme start points. In practice, as discussed earlier, the 

amplitude and energy of the impact load are important for health assessment, therefore, shifting the 

curves in time would not affect its momentum or energy.  
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Figure 2.5  Uncertain identification of impact load location for noise levels of 5% and 10% 

 (NSL denotes noise level) 

0

0.22

0.44

0.66

0.88

0 0.22 0.44 0.66 0.88

Target

Layer 1 (5% NSL)

Layer 2 (5% NSL)

Layer 3 (5% NSL)

Layer 1 (10% NSL)

Layer 2 (10% NSL)

Layer 3 (10% NSL)

SENS 3

SENS 5 SENS 6



21 

 

Figure 2.6  Uncertain identification of impact load time history at 5% noise level 

 

Table 2.5  Maximum and minimum impact load characteristics (at IL2) obtained from 

 Layer 3 assuming 5% and 10% noise level 

Parameters F0 (N) L (Hz) U (Hz) t0 (S) 

Actual 
5% noise 1000 1000 300 -140.0 

10% noise 1000 1000 300 -300.0 

Reconstructed (mean) 
5% noise 1034.9 997.2 310.6 -126.1 

10% noise 958.0 776.4 285.3 -499.4 

5% noise  

 

Maximum 1665.9 1172.2 437.6 0 

Minimum 403.9 822.2 183.6 -280.1 

10% noise  

 

Maximum 2006.5 916.69 350.4.2 0 

Minimum 0 636.1 220.2 -797 

 
The numerical scheme presented in Eqs. (2.19) through (2.23) is based on the assumption that the 

variations in strain are small enough that the nonlinear terms of Taylor’s series can be ignored. Otherwise, 

higher orders must be included in the approximation, which is beyond the scope of this study. Linear 

approximations are valid for the points close to the mean point or sufficiently low noise level. In practice, 

higher noise levels are rarely encountered and thus linear approximation can lead to sufficiently accurate 

results within practical ranges. 
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2.6  Conclusions 
 

A numerical scheme based on inverse analysis techniques is proposed to identify impact location (IL) and 

impact load time history (ILTH) for a simply supported plate. The proposed model offers a 

computationally efficient and inexpensive method, including a heuristic algorithm for optimization and a 

simplified interval analysis to account for the presence of noise in the system response. Although the 

proposed scheme is based on a mathematical forward solving model for a simply supported plate, it can 

be extended to other types of structures provided a suitable mathematical model is available. 

 

Implementation of the numerical scheme on a 0.88 × 0.88 × 0.0025 m aluminum plate indicates efficiency 

and accuracy of the proposed model in detection of IL and ILTH. The deviations in IL and ILTH caused 

by the presence of noise in the system response were successfully predicted with the linear approximation 

principle and the least square regression. The analyses for different noise levels indicated that the actual 

impact location and the time history lie inside the deviation’s boundaries. 
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3. EXPERIMENTAL VALIDATION OF THE IMPACT/COLLISION 
 DETECT SYSTEM  

 

Associated with the theoretical model, an impact experiment on plate structures is conducted by 

implementing the layered analysis with some modifications on the objective functions. Two main goals 

are followed with the implementation study. First, the effect of measurement noise on the inverse problem 

is studied, and second, suitability of different proposed options for each layer of analysis is discussed. For 

layers 1 and 2, different alternatives, beside the one that was already proposed, are compared and the best 

ones are selected for further analysis. The experiment is conducted at different locations and the 

contaminated measured data with noise are filtered to two different levels to study the effect of noise 

filtering on the final results at each layer. 

 

3.1 Theory 
 

Layer 1 

 

For layer 1, IL is estimated using three options: 

1. IL is estimated using the classical triangulation method. TOA is found using the threshold 

method. Threshold is assumed to be two times the noise level before the experiment starts.  

2. This option is similar to the first option but TOA is obtained in a different way. The measured 

signal is filtered by taking its integral with respect to time. Then option 1 is repeated using the 

integral of the measured signals. 

3. IL is calculated from weighted average of coordinates of the closest sensors. The weights are 

normalized signal energy (NSE) at each sensor location. The closest sensors exhibit the greatest 

NSE values. 

 

The first two options involve triangulation method through which the error between the measured and 

predicted TOAs is minimized for the three closest sensors. TOA is found at all sensor locations and the 

three smallest ones are selected for the triangulation. Minimization procedure is performed by the steepest 

descent method. The golden search method is used for the linear search in the steep descent method. The 

cost function is: 
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where tim, tic, xi and yi, andV are, respectively, the measured differential TOA, the predicted 

differential TOA, x and y coordinates of the i-th sensor, x and y coordinates of the IL, and wave speed. To 

calculate differential TOAs, one sensor such as sensor 1 is used as the reference. Differential TOAs at 

other sensor locations are obtained by subtracting TOA at sensor 1 location from the other TOAs. 

Bending wave’s speed in a plate structure can be computed from the following equation: 

 

2 2

4
212(1- )

Eh
V



 
                                       (3.2) 



24 

 

where E, , h,  and  are, respectively, the elastic modulus, Poisson’s ratio, plate thickness, plate unit 

weight, and wave frequency. The measured data are subjected to Fast Fourier Transform (FFT) then the 

dominant frequency is substituted into Eq. (2). 

 

In the third option, first, the measured signals at the three closest sensor locations are squared and then 

normalized as: 

 





4

1

2

2

)(

)(
)(

j

j

in

i

t

t
t




                           (3.3) 

Then the normalized signal energy (NSE) is: 
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where ti and tf are arbitrary time limits for the integration (start time in this study is close to TOA but it 

does not have to be exactly TOA). 

 

If the sensors are sufficiently close to the IL, it can be assumed that the NSE is linearly proportional to the 

distance of sensor from IL. Having signal energy at three sensor locations, the IL is estimated by: 
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As will be shown later, NSE will be linearly dependent on time but un-normalized signal energy exhibits 

nonlinear relationship with time. In other words, the rate of change of energy with time (power) is 

constant for the normalized one, which can be used as a characteristic response of the structure. In 

addition, normalization of signal energy makes it less dependent or independent of impact amplitude. This 

will be discussed in details later. 

 

Layer 2 

 

In layer 2, a mathematical model for the plate structure is obtained to predict the strain at sensor locations. 

Then the defined cost function is minimized to fit the predicted results to the measured ones. Whitney and 

Pagano’s approach [37] to plate dynamics has been adopted in this study for a simply supported rectangular 

plate: 
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Where i, j are mode numbers; a and b and ij are, respectively, length and width of plate and modal 

frequency of the plate.[38]  Kc and Kij are parameters related to geometry of the plate, dimensions of impact 

area, and modal frequency.[38] Particle swarm optimization (PSO) is adopted for the inverse analysis. 
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Since the optimization procedure becomes too slow with a high number of unknowns, the impact load is 

simplified with two quarter cycles of sinusoidal functions:[12, 16] 
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where F0, L, U, t0, t1, t2 are, respectively, impact load amplitude, loading frequency, unloading 

frequency, impact start time, the time corresponding to impact amplitude, and impact end time. Therefore, 

the unknowns are coordinates of IL, loading and unloading frequencies (L and U), start time (t0), and 

impact load amplitude (F0).  Substituting Eq. (3.7) into Eq. (3.6) yields an expression, which is linearly 

proportional to F0, therefore, by normalization, signal energy becomes independent of F0. In practice, there 

might be a difference between real and simplified ILTH. In this case, by normalization, degree of 

dependency on F0 decreases. Normalized signal energy will be used as an alternative cost function in 

second layer. Having the mathematical model and simplified ILTH, three options are evaluated for layer 

2: 

1. OPT1: The difference between the predicted and measured strain is minimized to obtain the 

unknown. The objective function is: 
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where ic(tj) and im(tj) are, respectively, the predicted and measured strains at the i-th sensor 

location and time tj and N is the number of time steps. 

2. OPT2: The inverse analysis is performed in two sub-layers: 2-A and 2-B. In 2-A all the 

unknowns are found (L, U, and t0) except impact amplitude. First strain energy is 

normalized with respect to the closest sensors. Then the normalized strain energies are used in 

Eq. (3.8). This leads to an objective function independent of F0. Having all the unknowns from 

sub-layer 2-A, Eq. (3.8) is again minimized with only one unknown (F0) and using strain at 

sensor locations. The reason for using this option is that PSO initially needs to define particles 

which cover the search space. With a larger number of particles more accurate results are 

obtained but it makes the optimization process slower. By dividing layer 2 into two sub-layers, 

the number of particles is reduced, hence, optimization process becomes faster. If the range of 

impact amplitude is divided into 5 intervals in the previous alternative, the total number of 

particles will be divided by five in sub-layer 2-A. 

3. OPT3: The third option is similar to the first option; however, un-normalized (average) signal 

power is used in Eq. (3.8). Average signal power is the signal energy divided by duration. 

Therefore, the objective function is: 
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where Pic and Pim are the predicted and measured signal power at the i-th sensor location, and the signal 

power is: 
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In this method, 4 sensors are used.  

 

Minimization in layer 2 is performed by the PSO method. This is a heuristic method, which is inspired by 

the fact that a flock of birds or fish find their way in search of food while they maintain their distance 

from each another constantly and adjust their speed intelligently to find the shortest distance to food. In 

this method, a set of particles, which cover a pre-defined range of the unknown parameters (6 parameters 

in this study) are used as a flock of birds and their values are changed iteratively until the cost function is 

minimized. During each iteration, the values of the particles are changed based on their momentum, their 

personal experience, and their communication with others so that the updated values result in a better 

fitness value. 

 

The effect of system error on inverse procedure 

 

The two options considered for layer 2 of the inverse procedure, OPT1 and OPT3, will be later 

investigated in terms of the effect of the discrepancy between the forward solving model (FSM) and the 

experiment. Essentially, in an inverse problem, FSM iteratively predicts the signal data and then is 

matched with the measurements. If FSM is unable to accurately simulate the real structure due to 

inconsistency in boundary conditions, imperfections, or any other dissimilarities, the unknown parameters 

would be back calculated with a lower precision. System error is always inevitable, so the goal of this 

study is to find an effective cost function that is less sensitive to system errors. Error in strain at a certain 

location can be approximated linearly by the first terms of Taylor’s series as: 
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whereis the maximum system errorEq. (3.11) is over determinate since it has 6 unknowns (deviation 

in the parameters) and there are as many equation as the number of sensors multiplied by the number of 

discretized time points. The set of equations can be solved using the least square method. In OPT3, 

however, average signal power is used, therefore, Eq. (3.11) is converted to: 

 

U

U

L

L

PP
t

t

P
F

F

PPP
P 









































 0

0

0

0

                  (3.12)  

Derivative of Pi can be expresses as derivative strain using Eq. (3.10) as: 
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Please note only the derivative with respect to is shown here and the derivatives with respect to other 

variables are calculated in the same way. Hence, having derivatives of strain, derivatives of power can be 

readily calculated. Eq. (3.12) can be set for the three surrounding sensors, therefore, unlike Eq. (3.11), Eq. 

(3.12) will be determinate. By solving the system of equations and obtaining the deviation in the IL and 

ILTH parameters, sensitivity of the two cost functions to a certain level of system error can be compared. 

The maximum observed system error must be used in the equations in order to reach the maximum 

possible deviations in the IL and ILTH parameters. 

 

3.2 Experimental results 
 

The experimental setup consists of a square aluminum plate of 0.88 m width and 0.0025 m thickness 

(Figure 1.2). The plate is simply supported on a rigid steel frame. To create a simply supported boundary 
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condition, the plate is clamped between a thin circular tube at bottom and a rectangular tube on top of it. 

The circular tube is then welded to the top of a frame made with rectangular tubes, and the set-up is 

supported by columns. The columns are fixed on a floor with heavy weights to prevent rigid movement of 

the footings during the experiment. Figure 3.1 shows the experiment setup. A sensor grid consisting of 

nine sensors and four grids is created with the sensors equally spaced at approximately 0.15 m. The center 

of the grid network lies at the center of the plate and the distance between the outer sensors of the grid 

with the boundaries is maximized to minimize the effect of reflected waves at the boundaries on the strain 

measurements. This might give rise to system error in case the boundaries are not perfectly acting as 

simple supports. Since Eq. (3.6) is developed for simply supported plates, it is important to create 

consistent conditions or avoid this effect by making sure there’s sufficient distance from the boundaries. 

Because, for the inverse analysis, only the initial portion of the signals will be used, boundary would not 

have significant effect in this experiment if sufficient distance is kept. In this experiment, the boundary-

sensor distance is approximately two times the spacing between the sensors. Most of the reported 

experiments in the literature have used piezoelectric sensors (PZT), however, in this experiment standard 

strain gauges are selected due to their cost-effectiveness. The strain gauges used in this experiment are 

120 Ohm provided by Micro-measurements of Vishay Precision Group. They are firmly bonded to the 

plate according to ASTM E1237. To enhance resolution and sensitivity, a strain gauge signal conditioner 

is used with a half-bridge Wheatstone. The data were recorded with two National Instrument PCI-6221 

data acquisition cards. Totally, 10 channels are used, including one for the impact hammer. To ensure that 

the data acquisition system can handle the high frequency data reading, a maximum of five channels were 

used on each PCI card. Labview v. 2011 is used to record and process the data. Since practically the 

software is unable to record the signal data at an arbitrarily high frequency, the data are filtered at a 

certain cut-off frequency. Very low cut-off frequency is more convenient for handling the data but leads 

to inaccurate results. Therefore, the experiment is repeated at least two times at filtering cut-off 

frequencies of 2000 and 5000 Hz to examine this effect on each layer of the analysis. Four trials are 

repeated by impacting four different locations each time at a different grid. A sampling rate of 40 KHz is 

used with a total of 20,000 samples to cover 0.5 seconds. An impact test was conducted by a PCB 

hammer 086C03 model and the signal produced by the hammer was amplified by a signal conditioner.  
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Figure 3.1  Experiment setup 

 

3.3 Verification of the forward solving model (FSM) 
 

The experimental results obtained at 5000 Hz cut-off frequency and at impact locations IP3 and IP4 are 

used to verify the plate dynamic model described above. In Figure 3.2, the comparison indicates that the 

FSM results match well with the experiment measurements up to a certain time, until 0.05 s after the 

sensor is triggered in this specific example. The main reason is that the dynamic plate model does not 

consider damping effect but as Figure 3.2 shows, there is a notable damping in the signals. Moreover, 

reflection of the impact wave from the boundaries would be the reason for the discrepancy due to 

imperfections in the boundaries. Although the simply supported boundary condition was provided, it is 

difficult to provide such an ideal boundary condition in practice. At prolonged durations, sufficient time is 

allowed for the reflected waves to arrive at the sensor locations and mixed with the decayed incident 

waves. In this study, only the initial portion of the signals are used for the inverse analysis, in which the 

effect of damping and boundary effects are neglected. 
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Figure 3.2  Comparison of strain time history obtained from the experiment and forward solving model at 

 SENS5 location (see Figure 3.1) for the impact at IP3 and IP4 locations  
 

Figure 3.3 illustrates the measured ILTH at IP4 with 5000 kHz cut-off frequency and the simplified ILTH 

with the sinusoidal equation [Eq. (3.7)]. It can be seen that the impact force has a sinusoidal shape 

followed by few peaks, which may be due to noise or multiple impact. The simplified equation fits well to 

the loading portion of the curve, but the unloading portion does not match quite well because the 

measured ILTH exhibits upward convex curvature. In order to study the importance of this discrepancy 

and its effect on the strain measurements, Eq. (3.6) is solved without substituting Eq. (3.7) in it, which 

means that the convolution integral is calculated numerically with the discrete data points of ILTH 

obtained from the experiment. The comparison is shown in Figure 3.4. It can be seen that discretization of 

the measured ILTH does not lead to a significant difference in the results with the sinusoidal load. Rather, 

presence of noise in the measured ILTH results in a less accurate match with the strain measurements. 
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Figure 3.3  Measured impact load time history (ILTH) and its simplified pulse using Eq. (3.7) for the IP4 

 with 5000 kHz cut-off frequency 
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Figure 3.4  Comparison of strain time history obtained from the experiment and forward solving model 

 (FSM) using the simplified (sinusoidal) and discretized loads at SENS5 location (see Figure 

 3.1) for impact at a) IP3 and b) IP4 locations  

 
Another important factor with the FSM is the number of modes used in Eq. (3.6) to predict strain in a 

plate. Practically higher modal frequencies have insignificant contributions to the total response of the 

structure and can be ignored for computational efficiency. To find the frequency (mode) cut-off in Eq. 

(3.6), the number of modes considered in the computations is varied from 4 to 625 by changing the upper 

limit for “i” and “j” equally. This is equivalent to a frequency range between 0.45 and 69.85 kHz. Figure 

3.5 shows that more than the plates’ dominant frequencies (first few modes) have to be included in the 
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computations to achieve accurate results. Figure 3.5.a compares the strain at SENS5 location of the plate 

due to an impact at IP4 and with a different number of modes included in the analysis. There is a 

moderately slight change in the strain above 25 modes (5 modes along x- and y-direction, respectively) 

and the change for more than 49 modes is insignificant. Figure 3.5.b indicates that the NSE also changes 

insignificantly for the case of more than 49 modes (7 modes along x- and y-direction, respectively). The 

case of 7 by 7 modes contains a maximum frequency of 5.58 kHz. Therefore, 5 kHz seems sufficiently 

high as a cut-off frequency. 

 

 
Figure 3.5  a) Effect of modal frequencies on the dynamic strain and b) normalized energy at SENS5 

 location for both FSM and experimental results due to impact at IP4 location  (in FSM equal 

 number of modes in x- and y-direction is considered, for instance 2 means 4 modes and 7 

 means 49 modes) 
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3.4  Verification of the inverse procedure  
 

The three options discussed earlier for layers 1 and 2 of the system identification are verified with the 

experimental measurements of the IP3 and IP4 events and the best option for each layer is adopted for 

further analysis. For both cases, 2 and 5 kHz are considered as cut-off frequencies. 

 

Layer 1 

 

The results from layer 1 inverse analysis are summarized in Table 3.1.  

 
Table 3.1  Summary of Layer 1 inverse analysis for the impact at IP4 and two cut off frequencies, 2 and 5 

 kHz, using the three options for layer 1 (the percentage in parentheses indicates the error in the 

 coordinates with respect to the actual coordinates) 
Time of Arrivals (S) 

Sensor 

OPT1 OPT2 

Frequency cut-off  

= 2 kHZ 

Frequency cut-off 

= 5 kHZ 

Frequency cut-off 

= 2 kHZ 

Frequency cut-off 

= 5 kHZ 

SENS4 286.825E-3 8.475E-3 286.250E-3 8.450E-3 

SENS5 287.100E-3 8.700E-3 286.875E-3 8.700E-3 

SENS7 286.900E-3 8.450E-3 286.325E-3 8.475E-3 

SENS8 287.175E-3 8.500E-3 286.450E-3 8.625E-3 

Dominant wave frequency  

Frequency cut-off (kHz) 2 5 

Dominant frequency* (kHz) 0.017 0.019 

Estimated impact Location 

Impact 

location 

coordinates 

Target 

OPT1 OPT2 OPT3 

2 (32.5%)* 5 (38.6%) 2 (36.8%) 5 (26.8%) 2 (35.8%) 5 (26.8%) 

 (m) .465 
0.51 

(9.7%) 

0.52  

(11.8%) 

0.52 

(11.8%) 

0.50 

(7.5%) 

0.51 

(9.7%) 

0.50 

(7.5%) 

 (m) .339 
0.36  

(6.2%) 

0.36 

(6.2%) 

0.35 

(3.2%) 

0.36 

(6.2%) 

0.37 

(9.1%) 

0.36 

(6.2%) 
*This error is ratio between the distance of the detected IL and the target point and the grid size. 

 

The dominant frequency is far less than the considered cut-off frequencies and it does not change 

noticeably with the two experiments with different cut-off frequencies. The detected coordinates through 

the three options do not show a significant deviation from each other. Having the ratio between the 

distance to the actual IL and the grid size, option 1, 3, and 2, respectively, lead to the least to most 

accurate results when 2 kHz is used as the cut-off frequency. However, option 1 leads to the least accurate 

results when the cut-off frequency rises to 5 kHz. This indicates incapability of the threshold method 

when the signal noise level is high. Option 1 consists of the standard triangulation using the threshold 

method to determine TOA. Option 2 is similar except it uses integral of the signals to find TOAs. Figure 

3.6 demonstrates the approximated TOA at SENS5 due to impact at IP4 through different methods. 

Figure 3.6.a demonstrates how TOA is obtained through the threshold method. Figure 3.6.b and 3.6.c 

show the signal integral at SENS5 due to the impact at IP4 and at 2 and 5 kHz cut off frequencies, 

respectively. The point where the slope of the spectrum changes abruptly is taken as TOA. The point 

corresponding to TOA in the strain integral time history (Figure 3.6.b and 3.6.c) is clearer than that in 

strain time history (Figure 3.6.a). It has to be noted that that although the two spectra in Figure 3.6.b and c 
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are obtained from the signals at the same location and due to the impact at the same point, they look 

different because they are obtained from two different experiments and impact load characteristics. 

Normalized and un-normalized (accumulative) signal energies are shown in Figure 3.7. Normalized signal 

energy varies linearly with time for any experiment but the un-normalized one is nonlinear which 

approaches to an asymptote toward the end of vibration. The un-normalized signal energy graphs for the 

experiments conducted at 2 kHz cut-off frequency are shifted to the origin because the impact start time is 

later than the other one and the noisy signal before impact event appears as almost zero energy on the 

spectrum. The rate of signal energy (signal power) is constant for the NSE and it is almost identical in 

both experiments (2 and 5 kHz cut-off frequencies). The normalized signal power might not be identical 

for the two experiments at the initial portion of the graph before TOA. For instance, TOA at SENS5 for 

the experiment with the 2 kHz cut-off frequency is 0.2871 s and the slope of the line before 0.2871 is 

different from that for the 5 kHz cut-off experiment. Therefore, normalized signal power (slope of the 

lines shown in Figure 3.7.a) is an appropriate parameter for localization since it is not significantly 

affected by noise. Additionally, normalized signal power (the slope of NSE line) is mainly dependent on 

IL rather than ILTH due to normalization. Therefore, it is a suitable alternative for layer 1 of the inverse 

analysis, which only seeks IL. 

 



35 

 

 
Figure 3.6  TOA determination in layer 1 inverse analyses using the signals obtained at SENS5 location 

 due to impact at IP4 a) option 1 (threshold method), 2 kHz cut-off frequency, b) option 2 

 (strain integral), 2 kHz cut-off frequency, and c) option 2 (strain integral), 5 kHz cut-off 

 frequency 
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Figure 3.7 a) Normalized signal energy and b) signal energy for the two sensors at SENS 5 and SENS7 

 locations due to impact at IP4 obtained from two different experiments with 2 and 5 kHz cut-

 off frequencies 
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Layer 2 

 

Layer 1 of the inverse analysis indicates that OPT3 is the most convenient and accurate method for IL 

estimation. Having the IL from layer 1, layer 2 of the inverse analysis is performed to refine the IL and 

find the impact amplitude and loading and unloading frequencies using the three options discussed above. 

Similar to layer 1, the experimental data for the IP4 event at 2 and 5 kHz cut-off frequencies is used as 

input for layer 2 inverse analyses. In all the analyses, about 70 data points from the experiment with a 

sampling frequency of 8 kHz is used. The IL coordinates estimated in layer 1 are used as the mean of the 

possible IL for layer 2 optimization procedure. The radius of the deviation is determined by the distance 

between the mean coordinates from layer 1 and coordinates of the gridlines. For example, layer 1 results 

in x-coordinate of 0.50 for IP4 at 5 kHz cut-off frequency (see table 1). x = 0.50 m is closer to the x = 0.44 

gridline and hence the radius of the interval is 0.50 – 0.44 = 0.06. Then the search interval is bounded 

between 0.44 and 0.56 (= 0.50 + 0.06). The impact amplitude is varied between 50 and 550 N, start time 

between 100 and 1000 S, loading frequency between 500 and 2000 Hz, and unloading frequency 

between 100 and 1000 Hz, with 3, 3, 4, 3, 2, 2 sample points, respectively, which results in a total of 432 

particles. In option 2, since the impact amplitude is determined through a different inverse procedure, the 

first sub-layer consists of 48 particles and the second sub-layer only 6 particles. This leads to a 

significantly faster computation since in heuristic optimization algorithms, the number of particles is 

important for computational efficiency. Since the experiment start time is arbitrary, for convenience, start 

time is assumed to be zero at the time when the farthest sensor in the grid is triggered, so t0 is the TOA at 

the farthest sensor location. Since in OPT1 and 2, only three out of four sensors are used, t0, according to 

the convention, is different from that of OPT3. 

 

Table 3.2 compares the refined IL as well as the start time, the impact amplitude, and the impact 

momentum obtained from the experiments performed at IP4 with cut-off frequencies of 2 and 5 kHz and 

the ones back-calculated by the inverse analysis using the three alternatives. The error between the back-

calculated and measured IL indicates that the data obtained from the 5 kHz experiment lead to more 

accurate results. In contrast, in layer 1, 2 kHz frequency cut-off lead to slightly more accurate ILs for 

OPT1. This is because the signal data are pre-filtered by using a lower cut-off frequency so that TOA can 

be found more conveniently in layer 1 of the inverse analysis; however, by using a lower cut-off 

frequency a large amount of information might be lost. In layer 2 of the inverse analysis, the magnitude of 

measurements is important for matching the predicted and measured signal data, a lower cut-off 

frequency would lead to less accurate results due to loss of the signal data. 
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Table 3.2  Summary of refined coordinates of IL and impact load characteristics for the impact at IP4 

 using different proposed options for layer 2 (the percent in the parentheses indicates the error) 

 Actual Cut-off Frequency (kHz) 

2 5 

2 kHz 5 kHz OPT1 OPT2 OPT3 OPT1 OPT2 OPT3 

 (m) 0.465 0.465 
0.434 

(26%) 

0.486 

(14%) 

0.446 

(33%) 

0.457 

(6%) 

0.486 

(14%) 

0.439 

(17%) 

 (m) 0.339 0.339 0.315 0.337 0.385 0.342 0.336 0.343 

t0 (S) 125 

(OPT1&2) 

550 (OPT3) 

575(OPT1&2) 

650 (OPT3) 

 990 

(692%) 

881 

(605%) 

 937 

(70%) 

 515 

(10%) 

611 

(6%) 

195 

(70%) 

F0 (N) 
133.4 148.6 

 71.6 

(46%) 

66.1 

(50%) 

294 

(120%) 

 83.7 

(44%) 

76.3 

(49%) 

 179.0 

(20%) 

Impact 

Momentum 

(N.mS) 

81.8 71.9 
 111.7 

(36%) 

112.0 

(37%) 

86.3 

(5%) 

202.5 

(182%) 

110 

(53%) 

 98.4 

(37%) 

 

The error percent shows that OPT3 results in the most accurate impact load amplitude for the 5 kHz cut-

off frequency experiment. In an impact event, not only the amplitude but also the impact duration and 

other impact characteristics determine the severity of an occurred damage. From this point of view, the 

impact momentum is important to evaluate the likelihood of structural damage and its severity, which is 

calculated for all the back-calculated ILTHs and the corresponding measurements. It can be seen that the 

calculated impact momentum is the most accurate with OPT3. Reconstructed and the measured ILTHs are 

shown in Figure 3.8. In general, OPT3 leads to a better fit to the measured ILTH when cut-off frequency 

is sufficiently high. Therefore, it is adopted for further study in this paper. 
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Figure 3.8  Comparison of the identified impact load time history (ILTH) through different options with 

 the measured one from the experiment conducted at IP4 and with a) 2 kHz and b) 5 kHz cut-

 off frequency 

3.5 Implementation of the modified inverse procedure 
 

The experiment is repeated at other locations (Figure 3.1) with 5 kHz cut-off frequency, and then layer 1 

and 2 of the inverse procedure are performed on the measurements to detect IL and reconstruct ILTH. 

OPT3 is adopted for layer 1 and OPT1 and OPT3 are used for layer 2. The identification results are 

shown in Figure 3.9 and 3.10 and Table 3.3. Figure 3.9 exhibits that despite the presence of system error, 

the impact location can be approximated using the proposed inverse procedure. Table 3.3 also shows that 

the impact load amplitude and impact momentum can be obtained with OPT3 of layer 2 with an 

acceptable precision. In general, OPT1 results in more accurate estimation of IL than OPT3. In contrast, 



40 

 

OPT3 results in more accurate estimation of the impact load amplitude and impact momentum. The main 

reason for the discrepancy is the error between the mathematical model and the experiment.  Depending 

on the type of cost function used in the inverse analysis, the fitting procedure is guided toward certain 

unknowns. OPT1 minimizes the difference between the measured and predicted strains at sensor locations 

to find the unknown parameters while OPT3 minimizes the difference between the average signal powers. 

Average signal power is indicative of the impact energy received by the sensors and thus it is strongly 

correlated with the impact amplitude and impact momentum. On the other hand, although strain depends 

on both IL and ILTH, it exhibits weaker dependence on impact load amplitude than IL. The above-

described interval analysis is used to find the error in IL and impact load amplitudes caused by system 

error, i.e., the error between the FSM and the experiment. A maximum system error of 5E-6 in strain is 

assumed for all the sensors. To solve Eq. (3.12) and find the deviation in the identification parameters due 

to the system error, the error in the signal power (the difference between analytical and experimental 

signal power) due to the system error has to be found first. The experimental signal power based on 

analytical strain and system error is: 
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Where tf is the end sampling time; t1 is the start sampling time; e is the strain system error; and (t) is the 

analytical strain at time t. 

 

Table 3.3  Identified impact load amplitude and impact momentum at different locations using OPT1 and 

 OPT3 in layer 2 of inverse analysis 

Impact location Impact load amplitude (N) Impact momentum (N*ms) 

OPT1 OPT3 Target OPT1 OPT3 Target 

IP1 83.5 289.7 211.1 1230 96.1 85.2 

IP2 70.8 148.8 127.0 127.9 72.3 59.7 

IP3 68.4 191.4 144.1 106.1 64.2 65.2 

IP4 83.7 179.0 148.6 202.5 98.4 71.9 
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Figure 3.9  Detected impact location for the impact experiment at different locations based on layer 1 and 

 layer 2 of the inverse procedure 
 

 
Figure 3.10  Reconstructed impact load time history with OPT3 for the impact experiment at IP2 and 

 5 kH cut off frequency 
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Therefore, error in the signal power is the difference between Eq. (3.14) and (3.10): 
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The error in the signal power can be calculated numerically by substituting Eq. (3.6) into (3.15). Having 

the error in signal power and signal data, Eqs. (3.11) to (3.13) are applied to find the deviations in the 

parameters due to the system error. 

 

The computed deviations in the x- and y- coordinates of the ILs are plotted in Figure 3.11. It can be seen 

that the likelihood region of IL obtained by OPT1 is contained with that of OPT3, that is, OPT3 is more 

likely to result in less accurate IL. Table 3.4 compares the computed deviations in impact load amplitude 

for the two options. System error causes a smaller error to amplitude for OPT 3. Table 3.2 and 3.4 are 

consistent because Table 3.2 shows that the IP4 experiments result in the most precise impact amplitudes 

with OPT3 and Table 3.4 shows that IP4 has the narrowest range of impact load amplitudes. 

 

 
Figure 3.11  Comparison between the deviations in the estimated impact location due to an assumed 

 system error (the error between the model and the experiment) through OPT1 and OPT3 

 inverse analysis 
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Table 3.4  Deviations in the impact load amplitude due to a system error of 5E-6 in strain for OPT 1 and 

 3 and different impact locations 
 IP1 IP2 IP3 IP4 

OPT1 40 33 38 39 

OPT3 38 18 25 12 

 

3.6 Linearity of normalized signal energy 
 

In this study, a new parameter, normalized signal energy (NSE), was introduced for layer 1 of the inverse 

problem. It was shown in Figure 3.7 that NSE grows linearly with time while un-normalized signal 

energy changes nonlinearly. The rate of change of NSE (slope of the line) was adopted as the system 

characteristic to estimate IL. To understand the reason why the NSE is linear with time and the associated 

limitations, Eq. (3.6) is rewritten as following by representing the mode shape by ij
L and amplitude by 

Gij(t) : 
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where L denotes the sensor location. Assume that the impact load is a sinusoidal function with equal 

loading and unloading frequency. Although, this is not the case in practice, the generality of the 

conclusion would not be affected. Then Gij(t) is: 
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Substituting Eq. (3.16) and (3.17) into Eq. (3.3) and assuming four sensor locations are used, we have: 
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Eq. (3.18) is a periodic function, which varies between 0 and 1, and since square of the sine functions 

appears in the equation, its frequency content consists of double of impact load frequency (2 and the 

plate modal frequencies (2ij). There is no closed form solution to the integral in Eq. (3.18). Since )(tn

L

is always positive and oscillating between 0 and 1 at high frequencies, the area under it increases almost 

linearly when time duration is long as evidenced in Figure 3.5.b and 3.7.a. Therefore, if duration of 

vibration is long enough, the NSE is close to a line. To ensure the linearity of NSE, integration time has to 

be sufficiently larger than the largest period of oscillation, which is 1/2fmin, where fmin is the smallest 

vibration frequency. For the given plate above, the smallest frequency is 114.1 Hz, so duration of 

vibration has to be longer than 0.004 s, which is much shorter than 0.5 s considered in the calculations. 

 

  



44 

 

Un-normalized signal power is: 
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Integration of Eq. (3.19) yields: 
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In Eq. (3.20), since frequencies are typically high (over 100 Hz in this study), all the sinusoidal terms can 

be ignored if duration t is sufficiently long. Therefore, un-normalized signal energy is linear with time 

theoretically; however, it did show in Figure 3.7.b due to damping effect. Instead un-normalized signal 

energy increases with time until it flattens toward the end of vibration. This does not apply to the NSE 

because, although the rate of change in power decreases with time, the normalized power still oscillates 

between 0 and 1 and it never decays away. In Eq. (3.20), in order to eliminate the high frequency data 

effect on un-normalized energy, as mentioned, t has to be sufficiently large or )2sin(2 tt   . With 

1142   duration longer than 0.013 s ensures the dominance of t in Eq. (3.20). The computations 

presented above satisfy both time restrictions. 

 

3.7 Conclusions 
 

An experimental study was conducted to evaluate the impact location and impact load identification 

proposed.[40] In layer 1, impact location (IL) was estimated then it was refined in layer 2 and also impact 

load time history (ILTH) was reconstructed. To maximize effectiveness and efficiency of the inverse 

algorithm, different options were proposed for each layer. A new parameter, normalized strain energy 

(NSE), was introduced as an option for layer 1 and it was adopted throughout the study for its 

convenience and accuracy since it does not require finding time of arrival (TOA). Measurement error was 

minimized by pre-filtering using low-pass filter. The study indicated that 5 kHz is sufficient as cut-off 

frequency. With lower cut-off frequency, due to loss of data, inaccurate results were obtained. System 

error, the discrepancy between the forward solving model (FSM) and the real structure, causes error in the 

identification parameters. Therefore, different options were evaluated for layer 2 and it was concluded 

that using the difference between the predicted and measured strain as cost function leads to more 

accurate results in terms of IL, but using signal energy in cost function leads to more accurate results in 

impact load amplitude. Depending on the importance of the unknowns, one of the options may be 

adopted. A new cost function combining the two options would improve accuracy of IL and impact load 

amplitude; however, a normalization factor is needed to balance the effect of both strain and power in the 

objective function. This was not considered in this study in order to not compromise simplicity of the 

proposed inverse scheme. 
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4. IMPLEMENTATION OF THE INTEGRATED SHM AND 
 IMPACT/COLLISION SYSTEM IN FIELD 
 
4.1 Introduction 
 

A bridge located approximately 15 miles (1609.3 m) northwest of Fargo, ND, was load tested. In order to 

correctly rate the bridge and further validate a hypothesized structural health monitoring methodology-

displacement distribution-based structural health monitoring, a two dimensional “grillage method” is used 

to idealize the longitudinal and transverse stiffness of the deck and beams in a grid system. The developed 

model was first verified using the field data obtained from Bridge Diagnostics, Inc. (BDI). Based on the 

field test results, a deformation distribution-based bridge health monitoring methodology is suggested, 

which could relate the deformation measurements at several locations of the bridge with the structural 

health status of the bridge, or directly with the ratings of the bridge.  

 

The bridge is a single span beam-slab bridge with an overall length of 60.0 ft. (18.3 m) and a clear span of 

57.0 ft. (2.1 m). The superstructure is composed of five post-tension concrete I-beams and two 

intermediate diaphragms made of reinforced concrete. The deck is made of 6.0 in. (0.15 m) reinforced 

concrete with a small curb and steel railing along the edges. Figures 4.1-3 show in detail the dimensions 

of the bridge and the I-beams, in terms of the bridge plan view, bridge cross-sectional dimensions, and the 

typical I-beam dimensions, respectively. 

 

The grillage model was first developed and compared to the field test data and was found to match well. 

Several damage cases were then simulated to analyze the change in the bridge’s structural responses due 

to them. With the results from damage simulations, ratios between the relative deflections of different 

locations were then extracted to quantify the level of the damages and their locations.  

 
 

Figure 4.1  Plan view of the bridge (All numbers in ft-in) 
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Figure 4.2  Cross-sectional view of the bridge (All numbers in ft-in) 

 

 
Figure 4.3  Typical I-beam dimensions (All numbers in in.) 

 

4.2 Load testing and data 
 

The Cass County 32 bridge was tested by Bridge Diagnostics, Inc. (BDI) using a total of 40 sensors 

placed at three cross-sections of the bridge.[41] Of the 40 sensors, there were 28 surface-mounted strain 

transducers, five cantilevered displacement sensors, and six tiltmeter rotation sensors. The displacement 

sensors were placed only at the cross-section B-B at midspan and the rotation sensors were placed at each 

end of beams 3 and 5. The strain sensors were placed on the bottom flange of all the post-tensioned beams 

at all three cross-section locations. For all the beams at midspan, a strain sensor was placed on the top 

flange as well as at the end cross-sections of beams 3 and 5. Additionally, four strain sensors were placed 

on the top and bottom of the curb to monitor its response and determine if it was contributing structurally 

to the bridge. A detailed arrangement of the sensor deployment can be seen in Fig. 4. Fig. 5 shows the 

sensor layout at each of the three cross-sections. The sensors used for this load test are standard sensors 

typically used by BDI, which can be viewed in detail at their website (www.bridgetest.com). 

http://www.bridgetest.com/
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Figure 4.4  Sensor layout (BDI, 2012) 
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Figure 4.5  Cross-Sectional view of senor layout 
 

To accurately measure the structural response of the bridge, three different load paths were used, referred 

to as Path Y1, Y2 and Y3. The location of each load path can be seen in Figure 4.6 below. Cass County 

Public Works provided a standard 48.0 kips (2.1x106 N) dump truck, which traveled over the bridge at 3-

5 mph (1.3-2.2 m/s). The rear wheel on the passenger side of the truck was equipped with a sensor to 

monitor the location of the truck with respect to time as it passed over the bridge. The truck location was 

recorded simultaneously with the data from the sensors attached to the wheel so that the structural 

response data could be presented with respect to the truck location. 

 

 
Figure 4.6  Lateral location of truck paths Y1, Y2, and Y3 (P stands for the passenger side, 

 D stands for the driver side) 
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The truck passed over each load path twice to ensure a reliable data set was obtained for the analysis. In 

addition to passing over the bridge slowly, one additional dynamic load test over Path Y2 was conducted 

at a speed of 35 mph to measure the dynamic load effect.  

 

After recording the raw data from the sensors, BDI processed the data using its own software program. 

The results were then evaluated by its engineers to ensure the data were of good quality. This was shown 

by having the strain measurements return to zero after loading and good reproducibility of responses. The 

strain measurements returning to zero after loading is also a good indication of elastic behavior of the 

beam. BDI also investigated the neutral axis depth from the strain measurements, and the depth was found 

to be fairly consistent throughout each beam. This is also an indicator of elastic behavior, which makes 

modeling of the bridge a less complicated task. Figure 4.7 below shows the strain results from three 

sensors for the two tests of each load path. Similarly, Figure 4.8 shows deflection results. 

 
 

Figure 4.7  Strain Response Reproducibility (BDI, 2012) 
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Figure 4.8  Deflection Reproducibility (BDI, 2012) 
 

A typical strain response of the bottom flange at midspan can be seen in Figure 4.9. The figure shows the 

recorded strain responses of the bridge under the Y1 load path. As expected, beam 5 experienced the 

largest strain responses from the truck load and the level of strain decreased from beam 4 to beam 1. 

Since beams 1 and 2 experienced noticeable strain response, one can see that the diaphragms and deck to 

some level transfer the load laterally. The maximum strain occurs when the truck’s front axle is 

approximately 45.0 ft (13.7 m) from the beginning of the bridge. This is also when the truck’s second axle 

is approximately located at the midspan of the bridge. The positive strain values show that the bottom 

flange is in tension. 

 

 
Figure 4.9  Midspan strain responses from load path Y1 
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Figure 4.10 shows a typical strain response of the top flange of the beams at midspan. Like the responses 

of the bottom flange, the largest response is seen at beam 5 with decreasing responses from beam 4 to 

beam 1. The localized spikes in strain that can be predominately seen in the beam 5 data and to a lesser 

extent in the beam 3 and 4 data; this is the result of the truck axle passing directly over the strain sensor 

location. 

 

 
Figure 4.10  Midspan strain responses from load path Y1 
 

Figure 4.11 shows the strain comparison of the top and bottom flange of beam 5. It can be seen that the 

top flange is in compression and the bottom flange is in tension. The large difference in magnitude 

between the two flanges and the similar shape of the response shows that the deck and beams are in 

composite action. The fact that the top flange experiences such smaller compression strains compared 

with the bottom flange tension strain indicates that deck slab is sustaining most of the compression strain. 

 

 
Figure 4.11  Observed composite behavior 
 

Figure 4.12 shows the measured displacement at midspan of beams 1-5. The displacement measurements 

for all beams return to zero after loading, which indicates elastic behavior for the whole structural system. 

As expected, the greatest displacement observed was at beams 4 and 5, which are closest to load path Y1. 

Also, the maximum displacement occurs when the truck’s front axle is located approximately 42.0 ft 
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(12.8 m) from the start of the bridge. At that location, the second axle is passing over the midspan of the 

bridge, the resultant force from the truck load is at this location. 

 

 
Figure 4.12  Example measured midspan displacement from load path Y1 
 

With the load test data provided by BDI, a series of analytical models can be developed to investigate the 

bridge structure. With an accurate model, simulations of a compromised structure can be developed and 

analyzed to show the reliability of the proposed structural health monitoring technique with varying levels 

of damage. 

 

4.3 Damage detection in bridges through Finite Element Modeling of its 
 responses under loading 
 

The Grillage method is a simple modeling method used to represent the stiffness of the deck through 

longitudinal and transverse beams. This method is commonly used among state DOTs to quickly analyze 

a simple beam-slab bridge structure. Typically, the longitudinal beams are placed where the actual bridge 

girders are located. The stiffness of these beams and the effective width of the deck are combined to give 

an approximate effective stiffness. Transverse members are placed at about 1.5 times the spacing of the 

longitudinal members. It is recommended that the spacing ratio not exceed 2:1. Transverse members 

should also be placed where any diaphragms are located. The stiffness of the transverse members is the 

transverse stiffness of the bridge deck. At locations where there is a diaphragm, the stiffness of both the 

deck and the diaphragm should be calculated (Jaeger and Bakht, 1982).[42] 

 

The finite element program Abaqus was used to develop the grillage model. Five longitudinal beams were 

used to idealize the longitudinal stiffness of the bridge. The locations of these beams are where the actual 

bridge girders are located, which are spaced at 72.0 in. (1.8 m) on center. Five transverse beams were 

used to idealize the transverse stiffness of the bridge, two of which are placed at the diaphragms. The 

transverse beams were spaced at 117.0 in. (3.0 m) on center. The end boundary conditions were initially 

set as completely fixed, which was determined from visual observation of the beams’ end conditions at 

the site. The end of the bridge girders were set on the abutments and had been fully grouted. However, 

soil movement behind abutments also contributes to bridge end boundary conditions. After comparing the 

results from the fixed boundary condition model with the actual field measurements, it was realized that 

the end boundary conditions need to be relaxed in order to mitigate the displacement difference. An axial 

spring and a rotational spring were added at each end of the beams. The results from the model matched 

with the field data after this change. It must be pointed out that the exact boundary condition is impossible 
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to obtain and not necessary as well, since the objective of the grillage model is to capture the relative 

stiffness distribution over the bridge layout. Figure 4.13 shows the basic layout of the bridge model. 

 

 
Figure 4.13  Grillage model layout 
 

The calculations for idealized stiffness of both the longitudinal and transverse members were completed 

using an effective stiffness equation, which took the contribution of the reinforcing steel into 

consideration. The Young’s modulus for the deck concrete and beam concrete was calculated using Eq. 

(4.1) and fc
′ = 4500 psi (31.0 MPa) and 5500 psi (38.0 MPa) for the deck and beam respectively. The 

concrete strength of the bridge deck and girders were taken from BDI’s final report on the bridge and 

represents an effective value of the field concrete strength through non-destructive testing. 

 

EC = 57000√fc
′                                                                                   (4.1) 

 

With the Young’s modulus of the beam and deck, the combined modulus was calculated using Eq. (4.2). 

Based on the BDI’s Ground Penetrating Radar (GPR) inspection of the deck, it was found that the 

reinforcement spacing for the top and bottom of the deck in the longitudinal direction was 16.0 in. (0.4 m) 

and 12.0 in. (0.3 m), respectively. For the transverse direction, both the top and bottom reinforcement 

spacing was found to be 12.0 in. (0.3 m). It was assumed that #4 bar was used for the reinforcement. For 

the post-tensioned beams, there are three ducts for the post-tension wires which each mostly likely hold 

22, 0.25 in. (0.006 m) wires. There are also two reinforcement bars set in the top flange of the post-

tensioned beams; for the calculation these were assumed to be #6 bar. 

For longitudinal members, 

 

Erc = Ec,eff × (1 +
(Ast,deck+Ast,beam)×

Es
Ec

A
)                                                (4.2) 

Ec,eff =
(Ebeam×Abeam)+(Edeck×Adeck)

A
                                                        (4.3) 

 

For transverse members, 

 

Erc = Ec (1 +
Ast,deck×

Es
Ec

A
)                                                             (4.4) 
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At diaphragm, 

 

Erc = Ec (1 +
(Ast,deck+Ast,diaph)×

Es
Ec

A
)                                                                        (4.5) 

 

Erc is the Young’s modulus of all the components combined together, including the concrete and 

reinforcing steel. 

 

During the modeling process it was required to define a section for the longitudinal and transverse 

members. When defining the beam section, the parameter of the neutral axis is required. With the 

longitudinal members being a composite section of the beam and deck, the strain measurements from the 

field test data could be used to estimate the actual neutral axis depth. The following equation was used to 

determine the neutral axis depth at each data point. 

 

Erc = 36" + (εtf +
36"

εbf+εtf
)                                                               (4.6) 

 

Considering the beams are 36.0 in. (0.9 m) deep and the deck has a thickness of 6.0 in. (0.15 m), only the 

data points that produced a value in the range of 15.0 in. (0.4 m) to 36 in. (0.9 m) were considered further. 

The neutral axis location values were averaged combining all measurements at the three cross-sections 

and load paths. An overall average value for an interior beam and exterior beam was finally produced. A 

value of 26.2 in. (0.7 m) and 27.1 in. (0.7 m) was produced for the interior beams and exterior beams, 

respectively, measured from the bottom of the beam. These values are reasonable considering the beams 

and deck act as a composite section. For comparison purposes the neutral axis depth was calculated by 

hand for a typical interior beam and exterior beam. The calculated value for the interior beam and the 

exterior beam were 28.3 in. (0.72 m) and 26.8 in. (0.68 m), respectively. This comparison shows that 

there is composite action between the beam and deck, and also the values produced from the field data are 

reasonable. 

 

Initially, the model’s end support conditions were fully fixed because of reasons discussed earlier. After 

analysis and adjusting parameters of the beams it was found that changing the end conditions by adding 

an axial and rotational spring at each end of the longitudinal members worked well. This allowed the 

beams to translate longitudinally and rotate about the transverse axis. The stiffness values of the springs 

were adjusted individually until the best possible match with the field results was obtained. After the 

adjustment, displacement values from the model matched well with the field data in most locations under 

different loading paths. The stiffness values for each spring are shown in Table 4.1. 
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Table 4.1  Stiffness values for springs 

Location 
Axial Spring, West, 

kip/in (N/m) 

Axial Spring, East, 

kip/in (N/m) 

Rotational Springs, 

kip/in (N/m) 

Beam1 1 (5.7) 1 (5.7) 1 (5.7) 

Beam 2 1020 (5814) 528 (3010) 480 (2736) 

Beam 3 762 (4343) 398 (2269) 362 (2063) 

Beam 4 1116 (6361) 578 (3295) 525 (2993) 

Beam 5 2125 (12113) 1100 (6270) 1000 (5700) 

 

To simulate the truck moving across the bridge, concentrated loads were applied where the wheels were 

located and moved in 3.0 ft. (0.91 m) increments. Since load paths are not aligned with the girder lines, a 

transformation from the load points to the grillage nodes is needed. Figure 4.14 represents one section of 

the grid and Eqs. (4.7) - (4.12) show the methodology used. The wheel load location, P, is the actual 

location of the truck tire. P1 and P2 are the linearly distributed loads from P to the transverse members, 

which are then linearly distributed again to the four corners. The moment induced in the longitudinal 

direction by transferring the wheel load to the transverse members (P1 and P2) was neglected in the 

analysis because the error created is small and can be ignored. The moment induced in the transverse 

direction by transferring P1 and P2 to the four nodes was also ignored because there is no cantilever type 

loading in the model and most of the wheel lines are less than 2.0 ft. (0.61 m) from the nearest 

longitudinal member. For these reasons the error in both the longitudinal and transverse directions should 

be negligible (Jaeger and Bakht, 1982).[42] 

 

 
Figure 4.14  Truck load redistributed to member intersections 

 

P1 = P
Xt−Xab

117"
                                                                    (4.7) 

P2 = P
Xcd−Xt

117"
                                                                                 (4.8) 

PA = P1
Ybc−Yt

72"
                                                                                  (4.9) 

PB = P1
Yt−Yad

72"
                                                              (4.10) 

PC = P2
Yt−Yad

72"
                                                              (4.11) 

PD = P2
Ybc−Yt

72"
                                                              (4.12) 
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PA, PB, PC, and PD are the effective loads at points A, B, C, and D, respectively. The following figure 

shows the truck’s footprint. The dual wheels for axles 2 and 3 were applied as one point load in the 

model. 

 

 
Figure 4.15  Test truck load footprint 
 

The model results obtained were directly compared to the deflection measurements collected by BDI. 

After several simulation trials adjusting the axial and rotational spring stiffness, a model was obtained 

where most locations under different load paths had a good matching with the actual deflection 

measurements. Although there were some parts of the model that did not match the field results, it was 

determined that this model could be used further for damage analysis and the initial development of a 

damage index. Figure 4.16 - 4.21 show some of these comparisons. 

 

 
Figure 4.16  Model and measured data comparison for load path Y1 on beam 2 

 

 
Figure 4.17  Model and measured data comparison for load path Y2 on beam 4 
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Figure 4.18  Model and measured data comparison for load path Y2 on beam 3 

 

 
Figure 4.19  Model and measured data comparison for load path Y2 on beam 1 

 

 
Figure 4.20  Model and field data comparison of load path Y3 on beam 3 

 

 
Figure 4.21  Model and field data comparison of load path Y3 on beam 1 
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In Figure 4.16 – 4.21, it can be seen that the deflection results from the model compare well with the 

measured field data. This shows that the developed model in general exhibits a similar structural response 

compared to the actual bridge. With this accurate model, damage simulations were conducted by reducing 

the Young’s modulus for a section of the beam at midspan, which essentially represents a damaged 

section. The damaged section used was 117.0 in. (3.0 m) long centered at the midspan of the bridge. The 

section was reduced by three different values, 25%, 50%, and 99% for beams 1 through 4. No damage 

simulations were conducted for beam 5 because the model was unable to match the field data well 

enough. Figure 4.22 – 4.24 are examples of the effect of the reduced section for beam 1 under load path 

Y2. 

 

 
Figure 4.22  25% stiffness reduction in the damaged section at midspan 

 

 
Figure 4.23  50% stiffness reduction in the damaged section at midspan 

 

 
Figure 4.24  99% stiffness reduction in the damaged section at midspan 
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With the reduced section stiffness the deflection results from the model increased as expected. The rate of 

deflection generally matches the field data. The influence of the damage increases with increased 

reduction in section. As expected, the graph with the 99% stiffness reduction has by far the greatest effect 

on the deflection results. Since the longitudinal members of the model represent the deck as well as the 

beams, this area of the 99% stiffness reduction essentially turns the beam into two cantilever beams from 

each abutment.  

 

When structural damage is present, it is postulated that the relative displacement between the two 

locations will begin to diverge more and more with increasing damage. This idea was originated from 

Phares et al. at Iowa State University (Phares et al., 2011).[43] In their project, the strain measurements of 

two sensors at the near field and the far field of the targeted location were compared to create a ratio. 

Ratios of the damaged bridges were compared with those of the undamaged bridge. It was hypothesized 

that difference between the ratios would be an indication of damage accumulation. In this research, the 

idea is extended to the deflection results and will serve to indicate damage in the structure as well as the 

location of the damage. It must be pointed out the comparison is not necessarily made to the undamaged 

bridge. Any newly accumulated damage between the bridges can be detected when the displacement ratio 

of these two bridges changes. 

 

The displacement ratio is calculated by the relative displacement between two certain locations in the 

undamaged state along the entire load path. A ratio of the damaged over the undamaged case is then 

calculated at each load step and then averaged. The deviation of this ratio from unity is an indication of 

damage, and the highest deviation is close to the damage location. The simulated stiffness reduction level 

and location for each damage case are detailed in Table 4.2. Figure 4.25 shows the damage ratio results 

for beam 1 in damage cases 1-3. The 1&3 Y2 defines the displacement ratio between beams 1 and 3 under 

the truck load path Y2. Similarly, 2&4 Y1 defines the displacement ratio between beams 2 and 4 under 

the truck load path Y1. The data are consistent in showing that, with increased damage, the ratio diverges 

away from unity. It is also anticipated that beam 1 and 3 show the greatest distance from unity compared 

with that of the ratios between beam 2 and 4. 

 

Table 4.2  The damage cases with different stiffness reduction levels 

Damage Case Beam Stiffness Reduction 

1 1 25% 

2 1 50% 

3 1 99% 

4 2 25% 

5 2 50% 

6 2 99% 

7 3 25% 

8 3 50% 

9 3 99% 

10 4 25% 

11 4 50% 

12 4 99% 
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Figure 4.25  Beam 1 displacement ratio indexes for damage cases 1-3 

 

 
Figure 4.26  Displacement ratio indexes along bridge for Damage Case 2 
 

Figure 4.26 shows the displacement ratios for damage case 2 along the longitudinal direction of the 

bridge. In the figure, at point 1 along the x-axis is the ratio of the relative displacement at section 1, which 

is 117.0 in. (3.0 m) from the west end of the bridge. Point 3 along the x-axis shows the ratios of the 

relative displacement at section 3, located 117.0 in. (3.0 m) from the east end of the bridge. The ratios at 

point 2 on the x-axis (midspan) are consistently farther away from unity when compared with cross-

sections 1 and 3. This indicates the ratio is sensitive to damage locations and is also consistent because 

the values at cross-section 1 and 3 are very similar. Figure 4.27 shows similar data except for the same 

location with different damage cases. 

 

 
Figure 4.27  Displacement ratio indexes for Beams 1 and 3 under load path Y3 for cases 1-12 
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4.4 Impact/collision detection through the integration of SHM and 
 impact/collision collection system 
 

The same sensor deployment can be adopted to capture the location of the impact or collision events. 

Through the strain time measurement, the algorithm developed in Chapter 3 could be used to locate the 

impact/collision positions, subject to boundary condition adjustments. 

 

4.5 Conclusions 
 

This report discussed the development of a simple two dimensional finite element model using the 

“grillage method.” The model was able to match well with the field test deflection data and was used to 

simulate the effect of structural damage on bridge responses. Based on the bridge response with damaged 

structural members, a damage ratio index (or displacement ratio index) is developed to quantify the level 

of damage and its location. The initial results show that severity of the damage and the location of 

damages are consistent with the variation of displacement ratio index. The same deployment of sensors 

could be used to locate the impact/collision position, which could serve as a history record of any 

infrastructure system. 
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